
Manage C data using the GLib collections
Open source library adds a wide range of useful data utilities

Skill Level: Intermediate

Tom Copeland (tom@infoether.com)
Developer
InfoEther

28 Jun 2005

In this tutorial, learn how to use the GLib collection data structures to effectively
manage data within C programs. In particular, you'll see how to use GLib's built-in
data structures/containers -- linked lists, hash tables, arrays, trees, queues, and
relations -- to fill the need for them in C.

Section 1. Before you start

About this tutorial

This tutorial shows you how to use the GLib collections to manage data efficiently
and elegantly within your C programs. The GLib collections are the result of many
years of refinement and are used by numerous open source programs. These
collections provide the more complex data structures/containers (the functions and
variables you need to manage data) that are in short supply in the C language.

This tutorial is written for Linux™ or UNIX® programmers whose skills and
experience are at a beginning to intermediate level.

Prerequisites

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 54

mailto:tom@infoether.com
http://www.ibm.com/legal/copytrade.shtml

To get the most out of this tutorial, you should be generally familiar with a UNIX-like
environment and know how to use a command-line shell.

You also need some basic programming tools to compile the source code examples,
such as a compiler like GCC (see the Resources section for downloading GCC); all
of the code examples in this tutorial were compiled with GCC 3.4.2.

You also need the GLib runtime and development libraries installed. Most modern
Linux distributions come with the GLib runtime installed; for example, the
"workstation" installation of Fedora Core 3 comes with two GLib RPMs: glib2-2.4.7-1
and glib2-devel-2.4.7-1.

Section 2. Organizing data

GLib's scope

First let's review the scope of GLib.

GLib is a lower-level library that provides many useful definitions and functions,
including definitions for basic types and their limits, standard macros, type
conversions, byte order, memory allocation, warnings and assertions, message
logging, timers, string utilities, hook functions, a lexical scanner, dynamic loading of
modules, and automatic string completion.

GLib also defines a number of data structures (and their related operations),
including:

• Memory chunks

• Doubly-linked lists

• Singly-linked lists

• Hash tables

• Strings (which can grow dynamically)

• String chunks (groups of strings)

• Arrays (which can grow in size as elements are added)

• Balanced binary trees

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 2 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• N-ary trees

• Quarks (a two-way association of a string and a unique integer identifier)

• Keyed data lists (lists of data elements accessible by a string or integer
id)

• Relations and tuples (tables of data which can be indexed on any number
of fields)

• Caches

Every program has to manage data

Programs are written to manipulate data. Your program may read in a list of names
from a file, prompt a user for some data through a graphical user interface, or load
data from an external hardware device. But once the data is in your program, it's up
to you to keep track of it. The functions and variables you use to manage data are
called data structures or containers.

If you're writing code in C, you'll find that it's pretty short on complex data structures.
There are lots of simple ways to store data, of course:

• The primitive types -- int s, floats, chars, and so forth.

• enum, which can hold a series of symbolic names for integers.

• The array, which is C's most flexible data structure.

An array can hold primitives or a series of any type of data or pointers to any type of
data.

But arrays have lots of limitations, too. They can't be resized, so if you allocate
memory for an array of ten items and find you need to put eleven things in it, you
need to create a new array, copy the old items in, and then put in the new item. If
you're going to iterate over every item in an array, you either have to have kept track
of how many items are in the array or ensure there's some sort of "end of array"
marker at the tail of the array so that you know when to stop.

The problems with keeping track of data in C have been solved many times over by
the use standard containers like the linked list and the binary tree. Every freshman
computer science major takes a data structures class; the instructor is sure to assign
a series of exercises on writing implementations of those containers. While writing
these structures, the student gains an appreciation for how tricky they are; dangling
pointers and double frees wait around every corner to trap the unwary student.

Writing unit tests can help a lot, but overall, rewriting the same data structure for

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 54

http://www.ibm.com/legal/copytrade.shtml

every new program is a thankless task.

Built-in data structures

That's where built-in data structures help. Some languages come with these
containers built in. C++ contains the Standard Template Library (STL), which has a
collection of container classes like lists, priority queues, sets, and maps. These
containers are also type-safe, meaning that you can only put one type of item in
each container object that you create. This makes them safer to use and eliminates
a lot of tedious casting that C requires. And the STL contains a host of iterators,
sorting utilities, and so forth to make working with the containers easier.

The Java programming language also comes with a set of container classes. The
java.util package contains ArrayList, HashMap, TreeSet, and various other
standard structures. It also includes utilities for generically sorting data and creating
immutable collections, as well as various other handy bits.

With C, however, there's no built-in container support; you either have to roll your
own or use someone else's data structure library.

Fortunately, GLib is an excellent, free, open source library that fills this need. It
contains most of the standard data structures and many of the utilities that you need
to effectively manipulate data in your programs. And it's been around since 1996, so
it's been thoroughly tested with a lot of useful functionality added along the way.

Algorithm analysis in 100 words (or fewer)

Different operations on containers take different amounts of time. For example,
accessing the first item in a long list is a lot faster than sorting that same list. The
notation used to describe the time to do these operations is called O-notation. This
topic is worthy of a semester of a computer science major's time, but in a nutshell,
O-notation is a worst-case analysis of an operation. In other words, it's a
measurement of the longest time that an operation will take to complete. It turns out
to be a useful way to measure data structure operations since the worst-case
operation is frequently encountered (such as when you search a list and don't find
the item you were looking for).

The following demonstrates some O-notation examples using things you could do
with a set of playing cards that are arranged in a line face down on a table:

• O(1) -- Selecting the first card. O(1) is also known as "constant time"
because picking up the first card takes the same amount of time no
matter how many cards are in the list.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 4 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• O(n) -- Turning over each card. O(n) is known as "linear time" because
the time to do it increases linearly as the number of cards increases.

• O(n!) -- Creating a list of all the possible permutations of all the cards.
For every new card that gets added to the list, the number of
permutations increases factorially.

Throughout this tutorial you'll see references to the O-notation of operations on
various data structures. Knowing the costs of a particular operation on a specific
data structure can help you choose containers wisely and maximize your
application's performance.

Compiling GLib programs

You'll learn more in this tutorial if you follow along with the examples by compiling
and running them. Since they use GLib, you need to tell the compiler where the GLib
header files and libraries are so it can resolve the GLib-defined types. This simple
program initializes a doubly-linked list and then adds a string of characters to it:

//ex-compile.c
#include <glib.h>
int main(int argc, char** argv) {
GList* list = NULL;
list = g_list_append(list, "Hello world!");
printf("The first item is '%s'\n", g_list_first(list)->data);
return 0;
}

You can compile this program by invoking GCC like this:

$ gcc -I/usr/include/glib-2.0 -I/usr/lib/glib-2.0/include -lglib-2.0 -o ex-compile
ex-compile.c

And run it to see the expected output:

$./ex-compile
The first item is 'Hello world!'
$

That's quite a laborious GCC invocation, though. A simpler way to point GCC to the
GLib libraries follows.

Using pkg-config

Manually specifying library locations is fragile and tedious, so most modern Linux

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 54

http://www.ibm.com/legal/copytrade.shtml

distributions come with the pkgconfig utility to help make this easier. You can use
pkgconfig to compile the program above like this:

$ gcc 'pkg-config --cflags --libs glib-2.0' -o ex-compile ex-compile.c

And the output is the same as before:

$./ex-compile
The first item is 'Hello world!'
$

Note that now you don't have to specify the paths to the GLib header files anymore;
pkgconfig's --cflags option takes care of that. And the same goes for the libraries
that are pointed to by the --libs option. Of course, there's no magic involved;
pkgconfig just reads the library and header file locations from a configuration file. On
a Fedora Core 3 system, the pkgconfig files are located in /usr/lib/pkgconfig, and the
glib-2.0.pc file looks like this:

$ cat /usr/lib/pkgconfig/glib-2.0.pc
prefix=/usr
exec_prefix=/usr
libdir=/usr/lib
includedir=/usr/include

glib_genmarshal=glib-genmarshal
gobject_query=gobject-query
glib_mkenums=glib-mkenums

Name: GLib
Description: C Utility Library
Version: 2.4.7
Libs: -L${libdir} -lglib-2.0
Cflags: -I${includedir}/glib-2.0 -I${libdir}/glib-2.0/include

So all the information is just hidden away by a layer of indirection. And if you happen
to have a Linux distribution that doesn't support pkgconfig, you can always just fall
back to pointing GCC directly to the header files and libraries.

Real-world GLib usage

Merely enumerating the GLib containers and showing example usages might be a
bit dry, so this tutorial also includes real-world usage of GLib in several open source
applications:

• Gaim is a popular instant messenger client that is downloaded from
SourceForge more than a quarter of a million times each month.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 6 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• The GIMP (Graphical Image Manipulation Program) served as the starting
point for GLib itself; it's a widely used image-processing program and has
been under public development since 1996.

• Evolution is an excellent personal information manager (PIM) that tracks
emails, contacts, tasks, and appointments.

Looking at GLib usage in these popular applications also gives you a chance to see
some coding idioms; rather than just knowing what the function names are, you can
also see how they are commonly used. You'll get a feel for the containers that are
being used and maybe you'll even notice some places where someone's picked a
container that might not be the best one for the job.

GLib also has many conventions and utility macros. As you go through this tutorial,
you'll see many of these used and explained. Rather than try to memorize them all
up front, just learn them as you go along and see them in action.

Section 3. Singly-linked lists

Concepts of singly-linked lists

Perhaps the simplest container in GLib is the singly-linked list; the GSList. As its
name implies, it's a series of data items that are linked together so that you can
navigate from one data item to the next. It's called a singly-linked list because there's
only a single link between the items. So, you can only move "forward" through the
list, but you can't move forward and then back up.

To drill in a bit further, every time you append an item to the list, a new GSList
structure is created. This GSList structure consists of a data item and a pointer. The
previous end of the list is then pointed to this new node, which means that now the
new node is at the end of the list. The terminology can be a bit confusing because
the entire structure is called a GSList and each node is a GSList structure as well.

Conceptually though, a list is just a sequence of lists that are each one item long. It's
as if it were a line of cars at a stoplight; even if there were only one car waiting at the
stoplight, it'd still be considered a line of cars.

Having a list of items linked together has some usage implications. Determining the
length of the list is an O(n) operation; you can't figure out how long the list is unless
you count each item. Adding to the front of the list is fast (an O(1) operation) since
the list is not a fixed length and doesn't need to be rebuilt once it exceeds a

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 54

http://www.ibm.com/legal/copytrade.shtml

threshold. But finding an item is an O(n) operation since you need to do a linear
search over the entire list until you find what you're looking for. Adding an item to the
end of the list is also an O(n) operation since to get to the end you need to start at
the beginning and iterate until you reach the end of the list.

A GSList can hold two types basic of data: integers or pointers. But this really means
that you can put pretty much anything in a GSList. For example, if you wanted a
GSList of the "short" data type, you could just put pointers to the shorts in the
GSList.

That's enough theory for now; on to actually using GSList!

Creating, adding, and destroying

The following code initializes a GSList, adds two items to it, prints out the list's
length, and frees it:

//ex-gslist-1.c
#include <glib.h>
int main(int argc, char** argv) {
GSList* list = NULL;
printf("The list is now %d items long\n", g_slist_length(list));
list = g_slist_append(list, "first");
list = g_slist_append(list, "second");
printf("The list is now %d items long\n", g_slist_length(list));
g_slist_free(list);
return 0;
}

***** Output *****

The list is now 0 items long
The list is now 2 items long

A couple of notes on the above code:

• Most GLib functions are of the format g_(container
name)_(function name). So to get the length of a GSList, you'd call
g_slist_length.

• There's no function to create a new GSList; instead, just declare a pointer
to a GSList structure and assign it a value of NULL.

• g_slist_append returns the new start of the list, so you need to hang
on to that return value.

• g_slist_free doesn't care whether any items have been placed in the
list or not; a quick peek at the source code shows that g_slist_free
just returns immediately if the GSList is NULL. g_slist_length also
works with an empty list; in that case, it just returns 0.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 8 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Adding and then removing data

You can put data in; you'll probably also need to take it out. Here's an example:

//ex-gslist-2.c
#include <glib.h>
int main(int argc, char** argv) {
GSList* list = NULL;
list = g_slist_append(list, "second");
list = g_slist_prepend(list, "first");
printf("The list is now %d items long\n", g_slist_length(list));
list = g_slist_remove(list, "first");
printf("The list is now %d items long\n", g_slist_length(list));
g_slist_free(list);
return 0;
}

***** Output *****

The list is now 2 items long
The list is now 1 items long

Most of this code should look familiar, but there are some points to consider:

• If you call g_slist_remove and pass in an item that's not in the list, the
list will be unchanged.

• g_slist_remove also returns the new start of the list.

• You can see that "first" is added with a call to g_slist_prepend. This is
a faster call than g_slist_append; it's O(1) rather than O(n) because,
as mentioned before, doing an append requires a full list traversal. So if
it's at all convenient to use g_slist_prepend, that's the one you want.

Removing duplicate items

Here's a wrinkle that shows what happens when you have duplicate items in a list:

//ex-gslist-3.c
#include <glib.h>
int main(int argc, char** argv) {
GSList* list = NULL;
list = g_slist_append(list, "first");
list = g_slist_append(list, "second");
list = g_slist_append(list, "second");
list = g_slist_append(list, "third");
list = g_slist_append(list, "third");
printf("The list is now %d items long\n", g_slist_length(list));
list = g_slist_remove(list, "second");
list = g_slist_remove_all(list, "third");
printf("The list is now %d items long\n", g_slist_length(list));
g_slist_free(list);
return 0;

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 54

http://www.ibm.com/legal/copytrade.shtml

}

***** Output *****

The list is now 5 items long
The list is now 2 items long

So if a GSList contains the same pointer twice and you call g_slist_remove, only
the first pointer will be removed. But you can remove all occurrences of an item with
g_slist_remove_all.

Last, nth, and nth data

Once a few items are in a GSList, you can pick out items in various ways. Here are
some examples, with explanations in the accompanying printf statements:

//ex-gslist-4.c
#include <glib.h>
int main(int argc, char** argv) {
GSList* list = NULL;
list = g_slist_append(list, "first");
list = g_slist_append(list, "second");
list = g_slist_append(list, "third");
printf("The last item is '%s'\n", g_slist_last(list)->data);
printf("The item at index '1' is '%s'\n", g_slist_nth(list, 1)->data);
printf("Now the item at index '1' the easy way: '%s'\n", g_slist_nth_data(list, 1));
printf("And the 'next' item after first item is '%s'\n", g_slist_next(list)->data);
g_slist_free(list);
return 0;
}

***** Output *****

The last item is 'third'
The item at index '1' is 'second'
Now the item at index '1' the easy way: 'second'
And the 'next' item after first item is 'second'

Note that there are some shortcut functions on GSList; you can simply call
g_slist_nth_data rather than calling g_slist_nth and then dereferencing the
returned pointer.

The last printf statement is a bit different. g_slist_next is not a function call,
but rather a macro. It expands to a pointer derefence of the link to the next element
in the GSList. In this case, you can see that we passed in the first element in the
GSList, so the macro expanded to provide the second element. It's a fast operation
too, since there's no function call overhead.

A step back: Working with a user-defined type

So far we've just been working with strings; that is, we've just been putting pointers

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 10 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

to characters in the GSList. In the code sample below, you'll define a Person struct
and push a few instances of that into a GSList:

//ex-gslist-5.c
#include <glib.h>
typedef struct {
char* name;
int shoe_size;
} Person;
int main(int argc, char** argv) {
GSList* list = NULL;
Person* tom = (Person*)malloc(sizeof(Person));
tom->name = "Tom";
tom->shoe_size = 12;
list = g_slist_append(list, tom);
Person* fred = g_new(Person, 1); // allocate memory for one Person struct
fred->name = "Fred";
fred->shoe_size = 11;
list = g_slist_append(list, fred);
printf("Tom's shoe size is '%d'\n", ((Person*)list->data)->shoe_size);
printf("The last Person's name is '%s'\n", ((Person*)g_slist_last(list)->data)->name);
g_slist_free(list);
free(tom);
g_free(fred);
return 0;
}

***** Output *****

Tom's shoe size is '12'
The last Person's name is 'Fred'

A few notes about working with GLib and user-defined types:

• You can see that putting a user-defined type in a GSList is the same as a
character string. Note also that you need to do a bit of casting when
you're getting the item out of the list.

• This example uses another GLib macro -- the g_new macro -- to create
the Fred Person instance. This macro simply expands to use malloc to
allocate the correct amount of memory for the given type, but it's a bit
cleaner than manually typing the malloc function call.

• Finally, if you're going to allocate memory, you need to free it. You can
see how the code sample above uses the GLib function g_free to do
just that for the Fred Person instance (since it was allocated with g_new
). In most cases g_free just wraps the usual free function, but GLib
also has memory pooling functionality that g_free and other
memory-management functions can use.

Combining, reversing, and all that

GSList comes with some handy utility functions that can concatenate and reverse
lists. Here's how they work:

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 54

http://www.ibm.com/legal/copytrade.shtml

//ex-gslist-6.c
#include <glib.h>
int main(int argc, char** argv) {
GSList* list1 = NULL;
list1 = g_slist_append(list1, "first");
list1 = g_slist_append(list1, "second");
GSList* list2 = NULL;
list2 = g_slist_append(list2, "third");
list2 = g_slist_append(list2, "fourth");
GSList* both = g_slist_concat(list1, list2);
printf("The third item in the concatenated list is '%s'\n", g_slist_nth_data(both, 2));
GSList* reversed = g_slist_reverse(both);
printf("The first item in the reversed list is '%s'\n", reversed->data);
g_slist_free(reversed);
return 0;
}

***** Output *****

The third item in the concatenated list is 'third'
The first item in the reversed list is 'fourth'

As expected, the two lists were concatenated head to tail so that the first item in list2
became the third item in the new list. Note that the items aren't copied; they're just
hooked on so that the memory needs to be freed only once.

Also, you can see that you can print out the first item in the reversed list using just a
pointer dereference (reversed->data). Since each item in a GSList is a pointer to
a GSList structure, you don't need to call a function to get the first item.

Simple iterating

Here's a straightforward way to iterate over the contents of a GSList:

//ex-gslist-7.c
#include <glib.h>
int main(int argc, char** argv) {
GSList* list = NULL, *iterator = NULL;
list = g_slist_append(list, "first");
list = g_slist_append(list, "second");
list = g_slist_append(list, "third");
for (iterator = list; iterator; iterator = iterator->next) {
printf("Current item is '%s'\n", iterator->data);

}
g_slist_free(list);
return 0;
}

***** Output *****

Current item is 'first'
Current item is 'second'
Current item is 'third'

The iterator object is just a variable declared as a pointer to a GSList structure. This
seems odd, but it's what you would expect. Since a singly-linked list is a series of

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 12 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

GSList structs, the iterator and the list should be of the same type.

Note also that this code uses a common GLib usage idiom; it declares the iterator
variable at the same time that it declares the GSList itself.

Finally, the for loop exit expression checks for the iterator being NULL. This works
since it will only be NULL after the loop has passed the last item in the list.

Advanced iteration with functions

Another way to iterate over a GSList is to use the g_slist_foreach function and
supply a function to be called for each item in the list.

//ex-gslist-8.c
#include <glib.h>
void print_iterator(gpointer item, gpointer prefix) {
printf("%s %s\n", prefix, item);
}
void print_iterator_short(gpointer item) {
printf("%s\n", item);
}
int main(int argc, char** argv) {
GSList* list = g_slist_append(NULL, g_strdup("first"));
list = g_slist_append(list, g_strdup("second"));
list = g_slist_append(list, g_strdup("third"));
printf("Iterating with a function:\n");
g_slist_foreach(list, print_iterator, "-->");
printf("Iterating with a shorter function:\n");
g_slist_foreach(list, (GFunc)print_iterator_short, NULL);
printf("Now freeing each item\n");
g_slist_foreach(list, (GFunc)g_free, NULL);
g_slist_free(list);
return 0;
}

***** Output *****

Iterating with a function:
--> first
--> second
--> third
Iterating with a shorter function:
first
second
third
Now freeing each item

Lots of good stuff in this example:

• A statement like GSList x = g_slist_append(NULL,
[whatever]) lets you declare, initialize, and add the first item to the list
all in one fell swoop.

• The g_strdup function is handy for duplicating a string; just remember to
free it once you're done with it.

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 54

http://www.ibm.com/legal/copytrade.shtml

• g_slist_foreach lets you pass in a pointer, so you can effectively give
it any argument along with each item in the list. For example, you could
pass in an accumulator and collect information about each item in a list.
The only restriction on the iterating function is that it takes at least one
gpointer as an argument; you can see how
print_interator_short works even though it accepts only one
argument.

• Note that the code frees all the strings using a built in GLib function as an
argument to g_slist_foreach. All you had to do in this case was cast
the g_free function to a GFunc for this to work. Note that you still have
to free the GSList itself with a separate call to g_slist_free.

Sorting with GCompareFunc

You can sort a GSList by supplying a function that knows how to compare the items
in that list. The following example shows one way to sort a list of strings:

//ex-gslist-9.c
#include <glib.h>
gint my_comparator(gconstpointer item1, gconstpointer item2) {
return g_ascii_strcasecmp(item1, item2);
}
int main(int argc, char** argv) {
GSList* list = g_slist_append(NULL, "Chicago");
list = g_slist_append(list, "Boston");
list = g_slist_append(list, "Albany");
list = g_slist_sort(list, (GCompareFunc)my_comparator);
printf("The first item is now '%s'\n", list->data);
printf("The last item is now '%s'\n", g_slist_last(list)->data);
g_slist_free(list);
return 0;
}

***** Output *****

The first item is now 'Albany'
The last item is now 'Chicago'

Notice that the GCompareFunc returns a negative value if the first item is less than
the second, 0 if they're equal, and a positive value if the second is greater than the
first. As long as your comparison function conforms to this specification, it can do
whatever it needs to internally.

Also, since various other GLib functions follow this pattern, it can be easy to
delegate to them. In fact, in the example above, you can just as easily replace the
call to my_comparator with something like g_slist_sort(list,
(GCompareFunc)g_ascii_strcasecmp) and you'll get the same results.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 14 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Finding an element

There are several ways to find an element in a GSList. You've already seen how you
can simply iterate over the contents of the list, comparing each item until you locate
the target item. You can use g_slist_find if you already have the data you're
looking for and just want to get to that location in the list. Finally, you can use
g_slist_find_custom, which lets you use a function to check each item in the
list. g_slist_find and g_slist_find_custom are illustrated below:

//ex-gslist-10.c
#include <glib.h>
gint my_finder(gconstpointer item) {
return g_ascii_strcasecmp(item, "second");
}
int main(int argc, char** argv) {
GSList* list = g_slist_append(NULL, "first");
list = g_slist_append(list, "second");
list = g_slist_append(list, "third");
GSList* item = g_slist_find(list, "second");
printf("This should be the 'second' item: '%s'\n", item->data);
item = g_slist_find_custom(list, NULL, (GCompareFunc)my_finder);
printf("Again, this should be the 'second' item: '%s'\n", item->data);
item = g_slist_find(list, "delta");
printf("'delta' is not in the list, so we get: '%s'\n", item ? item->data : "(null)");
g_slist_free(list);
return 0;
}

***** Output *****

This should be the 'second' item: 'second'
Again, this should be the 'second' item: 'second'
'delta' is not in the list, so we get: '(null)'

Note that g_slist_find_custom also takes a pointer to anything as the second
argument, so if needed, you can pass in something to help the finder function. Also,
the GCompare function is the last argument, rather than the second argument, since
it is in g_slist_sort. Finally, a failing search returns NULL.

Advanced adding with insert

Now that you've seen the GCompareFunc a few times, some of the more interesting
insertion operations will make more sense. Items can be inserted at a given position
with g_slist_insert, before a specified item with g_slist_insert_before,
and in a sorted order with g_slist_insert_sorted. Here's how it looks:

//ex-gslist-11.c
#include <glib.h>
int main(int argc, char** argv) {
GSList* list = g_slist_append(NULL, "Anaheim "), *iterator = NULL;
list = g_slist_append(list, "Elkton ");

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 54

http://www.ibm.com/legal/copytrade.shtml

printf("Before inserting 'Boston', second item is: '%s'\n", g_slist_nth(list, 1)->data);
g_slist_insert(list, "Boston ", 1);
printf("After insertion, second item is: '%s'\n", g_slist_nth(list, 1)->data);
list = g_slist_insert_before(list, g_slist_nth(list, 2), "Chicago ");
printf("After an insert_before, third item is: '%s'\n", g_slist_nth(list, 2)->data);
list = g_slist_insert_sorted(list, "Denver ", (GCompareFunc)g_ascii_strcasecmp);
printf("After inserting 'Denver', here's the final list:\n");
g_slist_foreach(list, (GFunc)printf, NULL);
g_slist_free(list);
return 0;
}

***** Output *****

Before inserting 'Boston', second item is: 'Elkton '
After insertion, second item is: 'Boston '
After an insert_before, third item is: 'Chicago '
After inserting 'Denver', here's the final list:
Anaheim Boston Chicago Denver Elkton

Since g_slist_insert_sorted takes a GCompareFunc, it's easy to reuse the
built-in GLib function g_ascii_strcasecmp. And now you can see why there's an
extra space at the end of each item; it's so another g_slist_foreach example
could sneak in there at the end of the code sample, this time with printf as the
GFunc.

Real-world usage of singly-linked lists

You can find lots of GSList usage in all three of the real-world open source
applications mentioned earlier. Most of the usage is fairly pedestrian, with lots of
inserts and appends and removes and so forth. But here's some of the more
interesting stuff.

Gaim uses GSLists to hold the current conversations and for various things in most
of the plug-ins:

• gaim-1.2.1/src/away.c uses a sorted GSList to hold the "away messages"
(the messages that are received while the client is offline). It uses a
custom GCompareFunc, sort_awaymsg_list to keep those messages
sorted by the sender's name.

• gaim-1.2.1/src/protocols/gg/gg.c uses a GSList to hold a list of permitted
accounts; it then uses a custom finder to verify that an account is in this
list. The custom finder simply delegates to g_ascii_strcasecmp, so
it's possible that it could be eliminated altogether and
g_ascii_strcasecmp passed directly to g_slist_find_custom.

Evolution uses plenty of GSLists as well:

• evolution-data-server-1.0.2/calendar/libecal/e-cal-component.c uses a

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 16 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

GSList to hold meeting attendees. In one case, it builds the GSList by
repeatedly calling g_slist_prepend and finishing up with a
g_slist_reverse to get the items in the desired order. As mentioned
earlier, this is faster than adding items with g_slist_append.

• evolution-2.0.2/addressbook/gui/contact-editor/e-contact-editor.c uses
g_slist_find in a sort of guard clause; it uses it in a signal handler to
ensure that an EContactEditor it received in a signal callback is still
around before passing it as an argument to a function.

The GIMP uses GSList in some nice ways too:

• gimp-2.2.4/plug-ins/maze/algorithms.c uses a GSList to track cells in the
maze-generations algorithm.

• gimp-2.2.4/app/widgets/gimpclipboard.c uses a GSList to hold clipboard
pixel-buffer formats (like PNG and JPEG); it passes a custom
GCompareFunc to g_slist_sort.

• gimp-2.2.4/app/core/gimppreviewcache.c uses a GSList as a sort of
size-based queue; it holds image previews in a GSList and uses
g_slist_insert_sorted to insert the smaller images first. Another
function in the same file trims the cache by iterating over the same GSList
and comparing each item by surface area to find the smallest one to
remove.

Section 4. Doubly-linked lists

Concepts of doubly-linked lists

Doubly-linked lists are much like singly-linked lists, but they contain extra pointers to
enable more navigation options; given a node in a doubly-linked list, you can either
move forward or backward. This makes them more flexible then singly-linked lists,
but it also increases memory usage, so don't use a doubly-linked list unless you're
actually going to need this flexibility.

GLib contains a doubly-linked list implementation called a GList. Most of the
operations in a GList are similar to those in a GSList. We'll review some examples of
basic usages and then the added operations that a GList allows.

Basic operations of doubly-linked lists

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 54

http://www.ibm.com/legal/copytrade.shtml

Here are some of the common operations you can do with a GList:

//ex-glist-1.c
#include <glib.h>
int main(int argc, char** argv) {
GList* list = NULL;
list = g_list_append(list, "Austin ");
printf("The first item is '%s'\n", list->data);
list = g_list_insert(list, "Baltimore ", 1);
printf("The second item is '%s'\n", g_list_next(list)->data);
list = g_list_remove(list, "Baltimore ");
printf("After removal of 'Baltimore', the list length is %d\n", g_list_length(list));
GList* other_list = g_list_append(NULL, "Baltimore ");
list = g_list_concat(list, other_list);
printf("After concatenation: ");
g_list_foreach(list, (GFunc)printf, NULL);
list = g_list_reverse(list);
printf("\nAfter reversal: ");
g_list_foreach(list, (GFunc)printf, NULL);
g_list_free(list);
return 0;
}

***** Output *****

The first item is 'Austin '
The second item is 'Baltimore '
After removal of 'Baltimore', the list length is 1
After concatenation: Austin Baltimore
After reversal: Baltimore Austin

The above code probably looks pretty familiar! All of the above operations are also
present in GSList; the only difference for GList is that the function names start with
g_list rather than g_slist. And, of course, they all take a pointer to a GList
structure rather than a pointer to a GSList structure.

Better navigation

Now that you've seen some basic GList operations, here are some operations that
are possible only because each node in a GList has a link to the previous node:

//ex-glist-2.c
#include <glib.h>
int main(int argc, char** argv) {
GList* list = g_list_append(NULL, "Austin ");
list = g_list_append(list, "Bowie ");
list = g_list_append(list, "Charleston ");
printf("Here's the list: ");
g_list_foreach(list, (GFunc)printf, NULL);
GList* last = g_list_last(list);
printf("\nThe first item (using g_list_first) is '%s'\n", g_list_first(last)->data);
printf("The next-to-last item is '%s'\n", g_list_previous(last)->data);
printf("The next-to-last item is '%s'\n", g_list_nth_prev(last, 1)->data);
g_list_free(list);
return 0;
}

***** Output *****

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 18 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Here's the list: Austin Bowie Charleston
The first item (using g_list_first) is 'Austin '
The next-to-last item is 'Bowie '
The next-to-last item is 'Bowie '

Nothing too surprising, but a few notes:

• The second argument to g_list_nth_prev is an integer indicating how
far back you want to navigate. If you pass in a value that goes outside the
limits of the GList, prepare for a crash.

• g_list_first is an O(n) operation; it starts at the specified node and
searches backward until it finds the beginning of the GList. The example
above is the worst-case scenario because the traversal starts at the end
of the list. g_list_last is O(n) for the same reason.

Removing nodes using links

You've already seen how you can remove a node from the list if you have a pointer
to the data it contains; g_list_remove does that nicely. If you have a pointer to the
node itself, you can remove that node directly in a quick O(1) operation:

//ex-glist-3.c
#include <glib.h>
int main(int argc, char** argv) {
GList* list = g_list_append(NULL, "Austin ");
list = g_list_append(list, "Bowie ");
list = g_list_append(list, "Chicago ");
printf("Here's the list: ");
g_list_foreach(list, (GFunc)printf, NULL);
GList* bowie = g_list_nth(list, 1);
list = g_list_remove_link(list, bowie);
g_list_free_1(bowie);
printf("\nHere's the list after the remove_link call: ");
g_list_foreach(list, (GFunc)printf, NULL);
list = g_list_delete_link(list, g_list_nth(list, 1));
printf("\nHere's the list after the delete_link call: ");
g_list_foreach(list, (GFunc)printf, NULL);
g_list_free(list);
return 0;
}

***** Output *****

Here's the list: Austin Bowie Chicago
Here's the list after the remove_link call: Austin Chicago
Here's the list after the delete_link call: Austin

So if you have a pointer to a node instead of to a node's data, you can remove that
node using g_list_remove_link.

After removing it, you'll need to explicitly free it using g_list_free_1, which does

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 54

http://www.ibm.com/legal/copytrade.shtml

just what its name implies: it frees one node. As usual, you need to hang on to the
return value of g_list_remove_link since that's the new beginning of the list.

Finally, if all you want to do is remove a node and free it, you can do that in one step
with a call to g_list_delete_link.

The same functions exist for the GSList as well; just replace g_list with g_slist
and all the above information applies.

Indexes and positions

If you just want to find the position of an item in a GList, you have two options. You
can use g_list_index, which looks up an item using the data in it, or you can use
g_list_position, which uses the pointer to the node. This example illustrates
both:

//ex-glist-4.c
#include <glib.h>
int main(int argc, char** argv) {
GList* list = g_list_append(NULL, "Austin ");
list = g_list_append(list, "Bowie ");
list = g_list_append(list, "Bowie ");
list = g_list_append(list, "Cheyenne ");
printf("Here's the list: ");
g_list_foreach(list, (GFunc)printf, NULL);
printf("\nItem 'Bowie' is located at index %d\n", g_list_index(list, "Bowie "));
printf("Item 'Dallas' is located at index %d\n", g_list_index(list, "Dallas"));
GList* last = g_list_last(list);
printf("Item 'Cheyenne' is located at index %d\n", g_list_position(list, last));
g_list_free(list);
return 0;
}

***** Output *****

Here's the list: Austin Bowie Bowie Cheyenne
Item 'Bowie' is located at index 1
Item 'Dallas' is located at index -1
Item 'Cheyenne' is located at index 3

Note that g_list_index returns a value of -1 if it can't find the data. And if there
are two nodes with the same data value, g_list_index returns the index of the
first occurrence. g_list_position also returns a -1 if it can't find the specified
node.

Again, these methods are also present on GSList under different names.

Real-world usage of doubly-linked lists

Let's look at the GList usage in the previously mentioned open source applications.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 20 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Gaim uses plenty of GLists:

• gaim-1.2.1/plugins/gevolution/add_buddy_dialog.c uses a call to
g_list_foreach to free up references to each contact when closing the
"add a buddy" dialog box.

• gaim-1.2.1/src/account.c uses a GList to hold all the accounts; it uses
g_list_find to ensure an account is not already present before adding
it with g_list_append.

Evolution GList usage:

• evolution-2.0.2/filter/filter-rule.c uses a GList to hold the parts (such as a
subject line to check) of a mail-filtering rule; filter_rule_finalise
uses g_list_foreach to release references to those parts.

• evolution-2.0.2/calendar/gui/alarm-notify/alarm.c uses a GList to hold the
alarms; queue_alarm uses g_list_insert_sorted to insert new
alarms in the correct place using a custom GCompareFunc.

The GIMP usage:

• gimp-2.2.4/app/file/gimprecentlist.c uses a GList to hold the recently
accessed files; gimp_recent_list_read reads the file names in from
an XML file descriptor and calls g_list_reverse before returning the
GList.

• gimp-2.2.4/app/vectors/gimpbezierstroke.c uses GLists to hold stroke
anchors; gimp_bezier_stroke_connect_stroke uses
g_list_concat to help connect one stroke to another.

Section 5. Hash tables

Concepts of hash tables

So far this tutorial has covered only ordered containers in which items inserted in the
container in a certain order stayed that way. Another type of container is a hash
table, also known as a "map," an "associative array," or a "dictionary."

Just as a language dictionary associates a word with a definition, hash tables use a
key to uniquely identify a value. Hash tables can perform insertion, lookup, and

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 54

http://www.ibm.com/legal/copytrade.shtml

remove operations on a key very quickly; in fact, with proper usage, these can all be
constant time -- that is, O(1) -- operations. That's much better than looking up or
removing an item from an ordered list, an O(n) operation.

Hash tables perform operations quickly because they use a hash function to locate
keys. A hash function takes a key and calculates a unique value, called a hash, for
that key. For example, a hash function could accept a word and return the number of
letters in that word as the hash. That would be a bad hash function because both
"fiddle" and "faddle" would hash to the same value.

When a hash function returns the same hash for two different keys, various things
can happen depending on the hash table implementation. The hash table can
overwrite the first value with the second value, it can put the values into a list, or it
can simply throw an error.

Note that hash tables aren't necessarily faster than lists. If you have a small number
of items -- less than a dozen or so -- you may get better performance by using an
ordered collection. That's because even though storing and retrieving data in a hash
table takes constant time, that constant time value may be large since computing the
hash of an item can be a slow process compared to dereferencing a pointer or two.
For small values, simply iterating over an ordered container can be faster than doing
the hash computations.

As always, it's important to think about your own application's specific data-storage
needs when choosing a container. And there's no reason why you can't switch
containers down the road if it becomes clear that your application needs it.

Some basic hash table operations

Here are some examples to put some wheels on the previous theory:

//ex-ghashtable-1.c
#include <glib.h>
int main(int argc, char** argv) {
GHashTable* hash = g_hash_table_new(g_str_hash, g_str_equal);
g_hash_table_insert(hash, "Virginia", "Richmond");
g_hash_table_insert(hash, "Texas", "Austin");
g_hash_table_insert(hash, "Ohio", "Columbus");
printf("There are %d keys in the hash\n", g_hash_table_size(hash));
printf("The capital of Texas is %s\n", g_hash_table_lookup(hash, "Texas"));
gboolean found = g_hash_table_remove(hash, "Virginia");
printf("The value 'Virginia' was %sfound and removed\n", found ? "" : "not ");
g_hash_table_destroy(hash);
return 0;
}

***** Output *****

There are 3 keys in the hash
The capital of Texas is Austin
The value 'Virginia' was found and removed

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 22 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Lots of new stuff there, so some notes:

• The call to g_hash_table_new specifies that this hash table will be
using strings as the keys. The functions g_str_hash and g_str_equal
are built into GLib since this is a common use case. Other built-in
hash/equality functions are g_int_hash /g_int_equal for using
integers as the keys, and g_direct_hash/ g_direct_equal for using
pointers as keys.

• GLists and GSLists have a g_[container]_free function to clean
them up; a GHashTable can be cleaned up with
g_hash_table_destroy.

• When you attempt to remove a key/value pair using
g_hash_table_remove, you get a gboolean value in return, indicating
whether the key was found and removed. The gboolean is a simple
cross-platform GLib implementation of a true/false value.

• g_hash_table_size returns the number of keys in the hash table.

Inserting and replacing values

When you insert a key using g_hash_table_insert, GHashTable will first check
to see if that key already exists. If it does, the value will be replaced but not the key.
If you want to replace both the key and the value, you need to use
g_hash_table_replace. It's a subtle difference, so both are illustrated below:

//ex-ghashtable-2.c
#include <glib.h>
static char* texas_1, *texas_2;
void key_destroyed(gpointer data) {
printf("Got a key destroy call for %s\n", data == texas_1 ? "texas_1" : "texas_2");
}
int main(int argc, char** argv) {
GHashTable* hash = g_hash_table_new_full(g_str_hash, g_str_equal,
(GDestroyNotify)key_destroyed, NULL);

texas_1 = g_strdup("Texas");
texas_2 = g_strdup("Texas");
g_hash_table_insert(hash, texas_1, "Austin");
printf("Calling insert with the texas_2 key\n");
g_hash_table_insert(hash, texas_2, "Houston");
printf("Calling replace with the texas_2 key\n");
g_hash_table_replace(hash, texas_2, "Houston");
printf("Destroying hash, so goodbye texas_2\n");
g_hash_table_destroy(hash);
g_free(texas_1);
g_free(texas_2);
return 0;
}

***** Output *****

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 54

http://www.ibm.com/legal/copytrade.shtml

Calling insert with the texas_2 key
Got a key destroy call for texas_2
Calling replace with the texas_2 key
Got a key destroy call for texas_1
Destroying hash, so goodbye texas_2
Got a key destroy call for texas_2

You can see from the output that when g_hash_table_insert tried to insert the
same string (Texas) as an existing key, the GHashTable simply freed the passed-in
key (texas_2) and left the current key (texas_1) in place. But when
g_hash_table_replace did the same thing, the texas_1 key was destroyed and
the texas_2 key was used in its place. A few more notes:

• When you create a new GHashTable, you can use
g_hash_table_full to supply a GDestroyNotify implementation to
be called when a key is destroyed. This lets you do any resource
cleanups for that key or in this case, see what's really happening with a
key change.

• You've seen g_strdup back in the GSList section; here it's used to
allocate two copies of the string Texas. You can see that the
GHashTable functions g_str_hash and g_str_equal correctly
detected that the actual strings were equivalent even though the variables
were pointers to different memory locations. And you had to free the
texas_1 and texas_2 at the end of the function to avoid leaking
memory. Of course, in this case it wouldn't have mattered since the
program was exiting, but it's best to be tidy anyhow.

Iterating the key/value pairs

Sometimes you need to iterate over all the key/value pairs. Here's how to do that
using g_hash_table_foreach:

//ex-ghashtable-3.c
#include <glib.h>
void iterator(gpointer key, gpointer value, gpointer user_data) {
printf(user_data, *(gint*)key, value);
}
int main(int argc, char** argv) {
GHashTable* hash = g_hash_table_new(g_int_hash, g_int_equal);
gint* k_one = g_new(gint, 1), *k_two = g_new(gint, 1), *k_three = g_new(gint, 1);
*k_one = 1, *k_two=2, *k_three = 3;
g_hash_table_insert(hash, k_one, "one");
g_hash_table_insert(hash, k_two, "four");
g_hash_table_insert(hash, k_three, "nine");
g_hash_table_foreach(hash, (GHFunc)iterator, "The square of %d is %s\n");
g_hash_table_destroy(hash);
return 0;
}

***** Output *****

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 24 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The square of 1 is one
The square of 2 is four
The square of 3 is nine

There are a few little twists in this example:

• You can see that using the GLib-provided hashing functions g_int_hash
and g_int_equal lets you use pointers to integers as the keys. And this
example uses the GLib cross-platform abstraction for integers: the gint.

• g_hash_table_foreach is a lot like the g_slist_foreach and
g_list_foreach functions that you've seen already. The only
difference is that the GHFunc passed to g_hash_table_foreach
accepts three arguments rather than two. In this case, you passed in a
string to be used to format the printing of the key and the value as the
third argument. Also, while the keys happen to have been listed in the
order they were inserted in this example, there's no guarantee that
key-insertion order will be preserved.

Finding an item

To find a specific value, use the g_hash_table_find function. This function lets
you look at each key/value pair until you locate the one you want. Here's an
example:

//ex-ghashtable-4.c
#include <glib.h>
void value_destroyed(gpointer data) {
printf("Got a value destroy call for %d\n", GPOINTER_TO_INT(data));
}
gboolean finder(gpointer key, gpointer value, gpointer user_data) {
return (GPOINTER_TO_INT(key) + GPOINTER_TO_INT(value)) == 42;
}
int main(int argc, char** argv) {
GHashTable* hash = g_hash_table_new_full(g_direct_hash, g_direct_equal,
NULL,
(GDestroyNotify)value_destroyed);

g_hash_table_insert(hash, GINT_TO_POINTER(6), GINT_TO_POINTER(36));
g_hash_table_insert(hash, GINT_TO_POINTER(10), GINT_TO_POINTER(12));
g_hash_table_insert(hash, GINT_TO_POINTER(20), GINT_TO_POINTER(22));
gpointer item_ptr = g_hash_table_find(hash, (GHRFunc)finder, NULL);
gint item = GPOINTER_TO_INT(item_ptr);
printf("%d + %d == 42\n", item, 42-item);
g_hash_table_destroy(hash);
return 0;
}

***** Output *****

36 + 6 == 42
Got a value destroy call for 36
Got a value destroy call for 22
Got a value destroy call for 12

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 54

http://www.ibm.com/legal/copytrade.shtml

As usual, this example introduces g_hash_table_find and a few other things as
well:

• g_hash_table_find returns the first value for which GHRFunc returns
TRUE. If the GHRFunc doesn't return TRUE for any item (such that no
suitable item is found), it returns NULL.

• This example demonstrates another set of built-in GLib hashing functions:
g_direct_hash and g_direct_equal. This set of functions lets you
use pointers as keys but makes no attempt at interpreting the data behind
the pointers. And since you're putting pointers in the GHashTable, you
need to use some of the GLib convenience macros (GINT_TO_POINTER
and GPOINTER_TO_INT) to convert the integers to and from pointers.

• Finally, this example creates the GHashTable and gives it a
GDestroyNotify callback function so you can see when the items are
destroyed. Most of the time you'll want to free some memory in a function
like this, but for example purposes, this implementation just prints out a
message.

Tricky business: Stealing from the table

Occasionally you may need to remove an item from a GHashTable without getting a
callback to any GDestroyNotify functions the GHashTable has been given. You
can do this either on a specific key using g_hash_table_steal or for all the keys
that match a criteria using g_hash_table_foreach_steal.

//ex-ghashtable-5.c
#include <glib.h>
gboolean wide_open(gpointer key, gpointer value, gpointer user_data) {
return TRUE;
}
void key_destroyed(gpointer data) {
printf("Got a GDestroyNotify callback\n");
}
int main(int argc, char** argv) {
GHashTable* hash = g_hash_table_new_full(g_str_hash, g_str_equal,
(GDestroyNotify)key_destroyed,
(GDestroyNotify)key_destroyed);

g_hash_table_insert(hash, "Texas", "Austin");
g_hash_table_insert(hash, "Virginia", "Richmond");
g_hash_table_insert(hash, "Ohio", "Columbus");
g_hash_table_insert(hash, "Oregon", "Salem");
g_hash_table_insert(hash, "New York", "Albany");
printf("Removing New York, you should see two callbacks\n");
g_hash_table_remove(hash, "New York");
if (g_hash_table_steal(hash, "Texas")) {
printf("Texas has been stolen, %d items remaining\n", g_hash_table_size(hash));

}
printf("Stealing remaining items\n");
g_hash_table_foreach_steal(hash, (GHRFunc)wide_open, NULL);

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 26 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

printf("Destroying the GHashTable, but it's empty, so no callbacks\n");
g_hash_table_destroy(hash);
return 0;
}

***** Output *****

Removing New York, you should see two callbacks
Got a GDestroyNotify callback
Got a GDestroyNotify callback
Texas has been stolen, 3 items remaining
Stealing remaining items
Destroying the GHashTable, but it's empty, so no callbacks

Advanced lookups: Finding both a key and a value

GHashTable provides a g_hash_table_lookup_extended function for those
cases when you need to fetch both a key and its value from a table. It's a lot like
g_hash_table_lookup, but it accepts two more arguments. These are "out"
arguments; that is, they are doubly-indirect pointers that will be pointed to the data
when it's located. Here's how they work:

//ex-ghashtable-6.c
#include <glib.h>
int main(int argc, char** argv) {
GHashTable* hash = g_hash_table_new(g_str_hash, g_str_equal);
g_hash_table_insert(hash, "Texas", "Austin");
g_hash_table_insert(hash, "Virginia", "Richmond");
g_hash_table_insert(hash, "Ohio", "Columbus");
char* state = NULL;
char* capital = NULL;
char** key_ptr = &state;
char** value_ptr = &capital;
gboolean result = g_hash_table_lookup_extended(hash, "Ohio", (gpointer*)key_ptr,
(gpointer*)value_ptr);
if (result) {
printf("Found that the capital of %s is %s\n", capital, state);

}
if (!g_hash_table_lookup_extended(hash, "Vermont", (gpointer*)key_ptr,
(gpointer*)value_ptr)) {
printf("Couldn't find Vermont in the hash table\n");

}
g_hash_table_destroy(hash);
return 0;
}

***** Output *****

Found that the capital of Columbus is Ohio
Couldn't find Vermont in the hash table

The code to initialize the variable that will receive the key/value data is a little
complicated, but thinking of it as a way of returning more than one value from the
function may make it more understandable. Note that if you pass in NULL for either
the last two arguments, g_hash_table_lookup_extended will still work, it just
won't fill in the NULL arguments.

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 27 of 54

http://www.ibm.com/legal/copytrade.shtml

Multiple values for each key

So far you've seen hashes that have only a single value for each key. But
sometimes you'll need to hold multiple values for a key. When this need arises,
using a GSList as the value and appending new values to that GSList is often a
good solution. It does take a bit more work, though, as you can see in this example:

//ex-ghashtable-7.c
#include <glib.h>
void print(gpointer key, gpointer value, gpointer data) {
printf("Here are some cities in %s: ", key);
g_slist_foreach((GSList*)value, (GFunc)printf, NULL);
printf("\n");
}
void destroy(gpointer key, gpointer value, gpointer data) {
printf("Freeing a GSList, first item is %s\n", ((GSList*)value)->data);
g_slist_free(value);
}
int main(int argc, char** argv) {
GHashTable* hash = g_hash_table_new(g_str_hash, g_str_equal);
g_hash_table_insert(hash, "Texas",
g_slist_append(g_hash_table_lookup(hash, "Texas"), "Austin "));

g_hash_table_insert(hash, "Texas",
g_slist_append(g_hash_table_lookup(hash, "Texas"), "Houston "));

g_hash_table_insert(hash, "Virginia",
g_slist_append(g_hash_table_lookup(hash, "Virginia"), "Richmond "));

g_hash_table_insert(hash, "Virginia",
g_slist_append(g_hash_table_lookup(hash, "Virginia"), "Keysville "));

g_hash_table_foreach(hash, print, NULL);
g_hash_table_foreach(hash, destroy, NULL);
g_hash_table_destroy(hash);
return 0;
}

***** Output *****

Here are some cities in Texas: Austin Houston
Here are some cities in Virginia: Richmond Keysville
Freeing a GSList, first item is Austin
Freeing a GSList, first item is Richmond

The "insert a new city" code in the example above takes advantage of the fact that
g_slist_append accepts NULL as a valid argument for the GSList; it doesn't need
to check if this is the first city being added to the list for a given state.

When the GHashTable is destroyed, you have to remember to free all those GSLists
before freeing the hash table itself. Note that this would be a bit more convoluted if
you weren't using static strings in those lists; in that case you'd need to free each
item in each GSList before freeing the list itself. One thing this example does show is
how useful the various foreach functions can be -- they can save a fair bit of
typing.

Real-world usage of hash tables

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 28 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Here's a sampling of how GHashTables are being used.

In Gaim:

• gaim-1.2.1/src/buddyicon.c uses a GHashTable to keep track of "buddy
icons." The key is the buddy's user name, and the value is a pointer to a
GaimBuddyIcon structure.

• gaim-1.2.1/src/protocols/yahoo/yahoo.c is the only location in these three
applications to use g_hash_table_steal. It uses
g_hash_table_steal as part of a section of code that builds an
account name to buddy list mapping.

In Evolution:

• evolution-2.0.2/smime/gui/certificate-manager.c uses a GHashTable to
track S/MIME certificate roots; the key is the organization name, and the
value is a pointer to a GtkTreeIter.

• evolution-data-server-1.0.2/calendar/libecal/e-cal.c uses a GHashTable to
track time zones; the key is a time zone ID string, and the value is a string
representation of an icaltimezone structure.

In GIMP:

• gimp-2.2.4/libgimp/gimp.c uses a GHashTable to track temporary
procedures. In the only usage of g_hash_table_lookup_extended in
the entire GIMP codebase, it uses a call to
g_hash_table_lookup_extended to find a procedure so that it can
first free the hash key's memory before removing the procedure.

• gimp-2.2.4/app/core/gimp.c uses a GHashTable to hold images; the key
is a image ID (an integer), and the value is a pointer to a GimpImage
structure.

Section 6. Arrays

Concepts of arrays

So far we've covered two types of ordered collections: GSList and GList. These are
rather similar in that they depend on pointers to link from one element to the next

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 29 of 54

http://www.ibm.com/legal/copytrade.shtml

item, or in the case of the GList, to the previous item. But there's another type of
ordered collection that doesn't use links; instead it works more or less like a C array.

It's called the GArray and it provides an indexed ordered collection of a single type
that grows as necessary to accommodate new items.

What's the advantage of an array over a linked list? For one thing, indexed access.
That is, if you want to get the fifth element in the array, you can simply call a function
to retrieve that item in constant time; there's no need to iterate up to that point
manually, which would be an O(n) operation. An array knows its own size, so to
query the size is an O(1) operation rather than O(n) operations.

Basic operations of arrays

Here are some of the primary ways to get data in and out of a GArray:

//ex-garray-1.c
#include <glib.h>
int main(int argc, char** argv) {
GArray* a = g_array_new(FALSE, FALSE, sizeof(char*));
char* first = "hello", *second = "there", *third = "world";
g_array_append_val(a, first);
g_array_append_val(a, second);
g_array_append_val(a, third);
printf("There are now %d items in the array\n", a->len);
printf("The first item is '%s'\n", g_array_index(a, char*, 0));
printf("The third item is '%s'\n", g_array_index(a, char*, 2));
g_array_remove_index(a, 1);
printf("There are now %d items in the array\n", a->len);
g_array_free(a, FALSE);
return 0;
}

***** Output *****

There are now 3 items in the array
The first item is 'hello'
The third item is 'world'
There are now 2 items in the array

Some points to ponder:

• There are several options to consider when creating a GArray. In the
example above, the first two arguments to g_array_new indicate
whether the array should have a zero element as a terminator and
whether new elements in the array should be automatically set to zero.
The third argument tells the array which type it is going to hold. In this
case the array is created to hold the type char*; putting anything else in
the array would lead to segfaults.

• g_array_append_val is a macro designed so that it does not accept

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 30 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

literal values, so you can't call g_array_append_val(a, 42). Instead,
the value needs to be placed in a variable and that variable passed in to
g_array_append_val. As a consolation for the inconvenience,
g_array_append_val is very fast.

• A GArray is a structure with a member variable len, so to get the size of
the array, you can just reference that variable directly; no need for a
function call.

• A GArray grows in powers of two. That is, if a GArray contains four items
and you add another, it will internally create another eight-element
GArray, copy the four existing elements into it, and then add your new
element. This resizing process takes time, so if you know you're going to
have a certain number of elements, it's more efficient to create the GArray
pre-allocated to the desired size.

More new/free options

In this example you'll see a few different ways to create and destroy a GArray:

//ex-garray-2.c
#include <glib.h>
int main(int argc, char** argv) {
GArray* a = g_array_sized_new(TRUE, TRUE, sizeof(int), 16);
printf("Array preallocation is hidden, so array size == %d\n", a->len);
printf("Array was init'd to zeros, so 3rd item is = %d\n", g_array_index(a, int, 2));
g_array_free(a, FALSE);

// this creates an empty array, then resizes it to 16 elements
a = g_array_new(FALSE, FALSE, sizeof(char));
g_array_set_size(a, 16);
g_array_free(a, FALSE);

a = g_array_new(FALSE, FALSE, sizeof(char));
char* x = g_strdup("hello world");
g_array_append_val(a, x);
g_array_free(a, TRUE);

return 0;
}

***** Output *****

Array preallocation is hidden, so array size == 0
Array was init'd to zeros, so 3rd item is = 0

Note that since GArrays grow by powers of two, it's inefficient to size an array to
something close to a power of two, like fourteen. Instead, just go ahead and bump it
up to the closest power of two.

More ways to add data

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 31 of 54

http://www.ibm.com/legal/copytrade.shtml

Thus far you've seen data added to the array with g_array_append_val. But
there are other ways to get data into an array, as shown below:

//ex-garray-3.c
#include <glib.h>
void prt(GArray* a) {
printf("Array holds: ");
int i;
for (i = 0; i < a->len; i++)
printf("%d ", g_array_index(a, int, i));

printf("\n");
}
int main(int argc, char** argv) {
GArray* a = g_array_new(FALSE, FALSE, sizeof(int));
printf("Array is empty, so appending some values\n");
int x[2] = {4,5};
g_array_append_vals(a, &x, 2);
prt(a);
printf("Now to prepend some values\n");
int y[2] = {2,3};
g_array_prepend_vals(a, &y, 2);
prt(a);
printf("And one more prepend\n");
int z = 1;
g_array_prepend_val(a, z);
prt(a);
g_array_free(a, FALSE);
return 0;
}

***** Output *****

Array is empty, so appending some values
Array holds: 4 5
Now to prepend some values
Array holds: 2 3 4 5
And one more prepend
Array holds: 1 2 3 4 5

So you can append multiple values to an array, you can prepend one value, and you
can prepend multiple values. Be careful with prepending values, though; it's an O(n)
operation since the GArray has to push all the current values down to make room for
the new data. You still need to use variables when appending or prepending multiple
values, but it's fairly straightforward since you can append or prepend an entire
array.

Inserting data

You can also insert data into an array in various places; you're not limited to simply
appending or prepending items. Here's how it works:

//ex-garray-4.c
#include <glib.h>
void prt(GArray* a) {
printf("Array holds: ");
int i;

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 32 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

for (i = 0; i < a->len; i++)
printf("%d ", g_array_index(a, int, i));

printf("\n");
}
int main(int argc, char** argv) {
GArray* a = g_array_new(FALSE, FALSE, sizeof(int));
int x[2] = {1,5};
g_array_append_vals(a, &x, 2);
prt(a);
printf("Inserting a '2'\n");
int b = 2;
g_array_insert_val(a, 1, b);
prt(a);
printf("Inserting multiple values\n");
int y[2] = {3,4};
g_array_insert_vals(a, 2, y, 2);
prt(a);
g_array_free(a, FALSE);
return 0;
}

***** Output *****

Array holds: 1 5
Inserting a '2'
Array holds: 1 2 5
Inserting multiple values
Array holds: 1 2 3 4 5

Note that these insert functions involve copying the current elements in the list
down to accommodate the new items, so using g_array_insert_vals is much
better than using g_array_insert_val repeatedly.

Removing data

There are three ways to remove data from a GArray:

• g_array_remove_index and g_array_remove_range, both of which
preserve the existing order

• g_array_remove_index_fast, which doesn't preserve the existing
order

Here are examples of all three:

//ex-garray-5.c
#include <glib.h>
void prt(GArray* a) {
int i;
printf("Array holds: ");
for (i = 0; i < a->len; i++)
printf("%d ", g_array_index(a, int, i));

printf("\n");
}
int main(int argc, char** argv) {
GArray* a = g_array_new(FALSE, FALSE, sizeof(int));
int x[6] = {1,2,3,4,5,6};

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 33 of 54

http://www.ibm.com/legal/copytrade.shtml

g_array_append_vals(a, &x, 6);
prt(a);
printf("Removing the first item\n");
g_array_remove_index(a, 0);
prt(a);
printf("Removing the first two items\n");
g_array_remove_range(a, 0, 2);
prt(a);
printf("Removing the first item very quickly\n");
g_array_remove_index_fast(a, 0);
prt(a);
g_array_free(a, FALSE);
return 0;
}

***** Output *****

Array holds: 1 2 3 4 5 6
Removing the first item
Array holds: 2 3 4 5 6
Removing the first two items
Array holds: 4 5 6
Removing the first item very quickly
Array holds: 6 5

If you're wondering about a usage scenario for g_array_remove_fast, you're not
alone; none of the three open source applications use this function.

Sorting arrays

Sorting a GArray is straightforward; it uses the GCompareFunc, which you already
seen at work in the GList and GSList section:

//ex-garray-6.c
#include <glib.h>
void prt(GArray* a) {
int i;
printf("Array holds: ");
for (i = 0; i < a->len; i++)
printf("%d ", g_array_index(a, int, i));

printf("\n");
}
int compare_ints(gpointer a, gpointer b) {
int* x = (int*)a;
int* y = (int*)b;
return *x - *y;
}
int main(int argc, char** argv) {
GArray* a = g_array_new(FALSE, FALSE, sizeof(int));
int x[6] = {2,1,6,5,4,3};
g_array_append_vals(a, &x, 6);
prt(a);
printf("Sorting\n");
g_array_sort(a, (GCompareFunc)compare_ints);
prt(a);
g_array_free(a, FALSE);
return 0;
}

***** Output *****

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 34 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Array holds: 2 1 6 5 4 3
Sorting
Array holds: 1 2 3 4 5 6

Note that the comparing function gets a pointer to the data items, so in this case you
need to cast them to a pointer to the correct type and then dereference that pointer
to get to the actual data item. GArray also includes an alternate sorting function,
g_array_sort_with_data, that accepts a pointer to an additional piece of data.

Incidentally, none of the three sample applications use either g_array_sort or
g_array_sort_with_data. But as always, it's good to know that they're
available.

Pointer arrays

GLib also provides GPtrArray, an array designed specifically to hold pointers. This
can be a bit easier to use than the basic GArray since you don't need to specify a
particular type when creating it or adding and indexing elements. It looks very much
like GArray, so we'll just review some examples of the basic operations:

//ex-garray-7.c
#include <glib.h>
#include <stdio.h>
int main(int argc, char** argv) {
GPtrArray* a = g_ptr_array_new();
g_ptr_array_add(a, g_strdup("hello "));
g_ptr_array_add(a, g_strdup("again "));
g_ptr_array_add(a, g_strdup("there "));
g_ptr_array_add(a, g_strdup("world "));
g_ptr_array_add(a, g_strdup("\n"));
printf(">Here are the GPtrArray contents\n");
g_ptr_array_foreach(a, (GFunc)printf, NULL);
printf(">Removing the third item\n");
g_ptr_array_remove_index(a, 2);
g_ptr_array_foreach(a, (GFunc)printf, NULL);
printf(">Removing the second and third item\n");
g_ptr_array_remove_range(a, 1, 2);
g_ptr_array_foreach(a, (GFunc)printf, NULL);
printf("The first item is '%s'\n", g_ptr_array_index(a, 0));
g_ptr_array_free(a, TRUE);
return 0;
}

***** Output *****

>Here are the GPtrArray contents
hello again there world
>Removing the third item
hello again world
>Removing the second and third item
hello
The first item is 'hello '

You can see how using a pointer-only array makes for a more straightforward API.
This may explain why in Evolution, g_ptr_array_new is used 178 times, whereas

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 35 of 54

http://www.ibm.com/legal/copytrade.shtml

g_array_new is only used 45 times. Most of the time a pointer-only container is
good enough!

Byte arrays

Another type-specific array provided by GLib is the GByteArray. It's mostly like the
types you've already seen, but there are a few wrinkles since it's designed for storing
binary data. It's very handy for reading binary data in a loop since it hides the "read
into a buffer-resize buffer-read some more" cycle. Here's some example code:

//ex-garray-8.c
#include <glib.h>
int main(int argc, char** argv) {
GByteArray* a = g_byte_array_new();
guint8 x = 0xFF;
g_byte_array_append(a, &x, sizeof(x));
printf("The first byte value (in decimal) is %d\n", a->data[0]);
x = 0x01;
g_byte_array_prepend(a, &x, sizeof(x));
printf("After prepending, the first value is %d\n", a->data[0]);
g_byte_array_remove_index(a, 0);
printf("After removal, the first value is again %d\n", a->data[0]);
g_byte_array_append(g_byte_array_append(a, &x, sizeof(x)), &x, sizeof(x));
printf("After two appends, array length is %d\n", a->len);
g_byte_array_free(a, TRUE);
return 0;
}

***** Output *****

The first byte value (in decimal) is 255
After prepending, the first value is 1
After removal, the first value is again 255
After two appends, array length is 3

You're also seeing a new GLib type used here: guint8. This is a cross-platform
8-bit unsigned integer that is helpful for representing bytes accurately in this
example.

Also, here you can see how g_byte_array_append returns the GByteArray. So if
you want to nest a couple of appends similar to the way you might do method
chaining, this makes it possible. Doing more than two or three of those is probably
not a good idea, though, unless you want your code to start looking LISP-ish.

Real-world usage of arrays

The various GLib array types are used in the sample applications, although not as
widely as the other containers you've seen.

Gaim uses only GPtrArrays and only in one or two cases.
gaim-1.2.1/src/gtkpounce.c uses a GPtrArray to keep track of several GUI widgets

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 36 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

that can be triggered when various events (like a buddy logging in) occur.

Evolution uses mostly GPtrArrays, although a number of GArrays and GByteArrays
appears as well:

• evolution-2.0.2/widgets/misc/e-filter-bar.h keeps several types of search
filters in GPtrArrays.

• evolution-2.0.2/camel/providers/imap4/camel-imap4-store.c uses a
GPtrArray to track items in an IMAP folder; it uses g_ptr_array_sort with a
GCompareFunc that delegates to strcmp.

The GIMP uses a fair number of GArrays and only a very few GPtrArrays and
GByteArrays:

• gimp-2.2.4/app/tools/gimptransformtool.c uses a GArray to track a list of
GimpCoord instances.

• gimp-2.2.4/app/base/boundary.c fills a GArray with points as part of a nifty
simplify_subdivide function; a doubly-indirect pointer to the GArray
gets recursively passed around as part of a boundary simplification
routine.

Section 7. Trees

Concepts of trees

Another useful container is called a tree. A tree consists of a root node that can have
children, each of which can have more children, and so forth.

An example of a tree structure is a filesystem or perhaps an email client; it has
folders that have folders that can contain more folders. Also, remember the end of
the hash table section where you saw an example of multivalued keys? (For
example, a String for a key and a GList for the value.) Since those GList values
could have contained more GHashTables, that was an example of a tree structure
trapped inside a GHashTable. It's a lot simpler to just use GTree rather than fighting
another container to make it act like a tree.

GLib includes two tree containers: GTree, a balanced binary tree implementation,
and GNode, a n-ary tree implementation.

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 37 of 54

http://www.ibm.com/legal/copytrade.shtml

A binary tree has a special property that each node of the tree has no more than two
children; a balanced binary tree means that the elements are kept in a specified
order for faster searching. Keeping the elements balanced means that removal and
insertion can be slow since the tree may need to internally rebalance itself, but
finding an item is a O(log n) operation.

A n-ary tree node, by contrast, can have many children. This tutorial focuses mostly
on binary trees, but you'll see some examples of n-ary trees, too.

Basic tree operations

Here are some basic operations you can perform on a tree:

//ex-gtree-1.c
#include <glib.h>
int main(int argc, char** argv) {
GTree* t = g_tree_new((GCompareFunc)g_ascii_strcasecmp);
g_tree_insert(t, "c", "Chicago");
printf("The tree height is %d because there's only one node\n", g_tree_height(t));
g_tree_insert(t, "b", "Boston");
g_tree_insert(t, "d", "Detroit");
printf("Height is %d since c is root; b and d are children\n", g_tree_height(t));
printf("There are %d nodes in the tree\n", g_tree_nnodes(t));
g_tree_remove(t, "d");
printf("After remove(), there are %d nodes in the tree\n", g_tree_nnodes(t));
g_tree_destroy(t);
return 0;
}

***** Output *****

The tree height is 1 because there's only one node
Height is 2 since c is root; b and d are children
There are 3 nodes in the tree
After remove(), there are 2 nodes in the tree

A few notes on that code:

• You can see how each node in a GTree consists of a key-value pair. The
key is used to ensure the tree is balanced, the node is inserted in the
proper place, and the value is a pointer to the "payload" that you want to
track.

• You have to supply a GCompareFunc to g_tree_new so the GTree
knows how to compare the keys. This can be a built-in function as shown
above, or you can roll your own.

• The tree "height" is simply the number of nodes from top to bottom,
inclusive. To execute this function, the GTree has to start at its root and
move downward until it hits a leaf node. The g_tree_nnodes function is
even more expensive; it requires a full traversal of the entire tree.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 38 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Replace and steal

You've seen the replace and steal function names before on GHashTable; the
ones on GTree work in much the same way. g_tree_replace replaces both the
key and the value of a GTree entry, as opposed to g_tree_insert, which replaces
only the value if the key inserted is a duplicate. And g_tree_steal removes a
node without calling any GDestroyNotify functions. Here's an example:

//ex-gtree-2.c
#include <glib.h>
void key_d(gpointer data) {
printf("Key %s destroyed\n", data);
}
void value_d(gpointer data) {
printf("Value %s destroyed\n", data);
}
int main(int argc, char** argv) {
GTree* t = g_tree_new_full((GCompareDataFunc)g_ascii_strcasecmp,
NULL, (GDestroyNotify)key_d, (GDestroyNotify)value_d);

g_tree_insert(t, "c", "Chicago");
g_tree_insert(t, "b", "Boston");
g_tree_insert(t, "d", "Detroit");
printf(">Replacing 'b', should get destroy callbacks\n");
g_tree_replace(t, "b", "Billings");
printf(">Stealing 'b', no destroy notifications will occur\n");
g_tree_steal(t, "b");
printf(">Destroying entire tree now\n");
g_tree_destroy(t);
return 0;
}

***** Output *****

>Replacing 'b', should get destroy callbacks
Value Boston destroyed
Key b destroyed
>Stealing 'b', no destroy notifications will occur
>Destroying entire tree now
Key d destroyed
Value Detroit destroyed
Key c destroyed
Value Chicago destroyed

In this example, you create the GTree using g_tree_new_full; just like with a
GHashTable, you can register for notifications for any combination of key or value
destruction. The second argument to g_tree_new_full can contain data to be
passed to the GCompareFunc, but there's no need for it here.

Looking up data

GTree provides ways to look up the key only or both the key and the value. This is
just like you've seen before in GHashTable; there's a lookup and a
lookup_extended. Here's an example:

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 39 of 54

http://www.ibm.com/legal/copytrade.shtml

//ex-gtree-3.c
#include <glib.h>
int main(int argc, char** argv) {
GTree* t = g_tree_new((GCompareFunc)g_ascii_strcasecmp);
g_tree_insert(t, "c", "Chicago");
g_tree_insert(t, "b", "Boston");
g_tree_insert(t, "d", "Detroit");
printf("The data at 'b' is %s\n", g_tree_lookup(t, "b"));
printf("%s\n", g_tree_lookup(t, "a") ? "My goodness!" : "As expected, couldn't find
'a'");

gpointer* key = NULL;
gpointer* value = NULL;
g_tree_lookup_extended(t, "c", (gpointer*)&key, (gpointer*)&value);
printf("The data at '%s' is %s\n", key, value);
gboolean found = g_tree_lookup_extended(t, "a", (gpointer*)&key, (gpointer*)&value);
printf("%s\n", found ? "My goodness!" : "As expected, couldn't find 'a'");

g_tree_destroy(t);
return 0;
}

***** Output *****

The data at 'b' is Boston
As expected, couldn't find 'a'
The data at 'c' is Chicago
As expected, couldn't find 'a'

Here you see the doubly-indirect pointer technique again. Since multiple values
need to be provided by g_tree_lookup_extended, it accepts two pointers to
pointers, one to the key and one to the value. And note that if g_tree_lookup can't
find the key, it returns a NULL gpointer, whereas if g_tree_lookup_extended
can't find the target, it returns a gboolean value of FALSE.

Listing the tree with foreach

GTree supplies a g_tree_foreach function to iterate over the nodes of the tree in
the sorted order. Here's an example:

//ex-gtree-4.c
#include <glib.h>
gboolean iter_all(gpointer key, gpointer value, gpointer data) {
printf("%s, %s\n", key, value);
return FALSE;
}
gboolean iter_some(gpointer key, gpointer value, gpointer data) {
printf("%s, %s\n", key, value);
return g_ascii_strcasecmp(key, "b") == 0;
}
int main(int argc, char** argv) {
GTree* t = g_tree_new((GCompareFunc)g_ascii_strcasecmp);
g_tree_insert(t, "d", "Detroit");
g_tree_insert(t, "a", "Atlanta");
g_tree_insert(t, "c", "Chicago");
g_tree_insert(t, "b", "Boston");
printf("Iterating all nodes\n");
g_tree_foreach(t, (GTraverseFunc)iter_all, NULL);

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 40 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

printf("Iterating some of the nodes\n");
g_tree_foreach(t, (GTraverseFunc)iter_some, NULL);
g_tree_destroy(t);
return 0;
}

***** Output *****

Iterating all nodes
a, Atlanta
b, Boston
c, Chicago
d, Detroit
Iterating some of the nodes
a, Atlanta
b, Boston

Note that when iter_some returned TRUE, the iteration stopped. This makes
g_tree_foreach useful for searching up to a point, accumulating the first 10 items
that match a condition, or things of that sort. And, of course, you can just traverse
the entire tree by returning FALSE from the GTraverseFunc.

Also, note that you shouldn't modify the tree while iterating over it using
g_tree_foreach.

There's a deprecated function, g_tree_traverse, that was intended to provide
other ways to traverse the tree. For example, you could visit the nodes in post order,
that is visiting a tree from the bottom up. This has been deprecated since 2001,
though, so the GTree documentation suggests that any usages of it be replaced with
g_tree_foreach or a n-ary tree instead. None of the open source applications
surveyed here use it, which is a good thing.

Searching

You can find items using g_tree_foreach and, if you know the key,
g_tree_lookup. But for more complicated searches, you can use the
g_tree_search function. Here's how it works:

//ex-gtree-5.c
#include <glib.h>
gint finder(gpointer key, gpointer user_data) {
int len = strlen((char*)key);
if (len == 3) {
return 0;

}
return (len < 3) ? 1 : -1;
}
int main(int argc, char** argv) {
GTree* t = g_tree_new((GCompareFunc)g_ascii_strcasecmp);
g_tree_insert(t, "dddd", "Detroit");
g_tree_insert(t, "a", "Annandale");
g_tree_insert(t, "ccc", "Cleveland");
g_tree_insert(t, "bb", "Boston");
gpointer value = g_tree_search(t, (GCompareFunc)finder, NULL);

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 41 of 54

http://www.ibm.com/legal/copytrade.shtml

printf("Located value %s; its key is 3 characters long\n", value);
g_tree_destroy(t);
return 0;
}

***** Output *****

Located value Cleveland; its key is 3 characters long

Note that the GCompareFunc passed to g_tree_search actually determines how
the search proceeds by returning 0, 1, or -1 depending on which way the search
should go. This function could even change the conditions as the search proceeded;
Evolution does just that when it uses g_tree_search to manage its memory
usage.

More than binary: n-ary trees

The GLib n-ary tree implementation is based on the GNode structure; as mentioned
before, it allows for many child nodes for each parent node. It seems to be rarely
used, but for completeness, here's a usage flyover:

//ex-gtree-6.c
#include <glib.h>
gboolean iter(GNode* n, gpointer data) {
printf("%s ", n->data);
return FALSE;
}
int main(int argc, char** argv) {
GNode* root = g_node_new("Atlanta");
g_node_append(root, g_node_new("Detroit"));
GNode* portland = g_node_prepend(root, g_node_new("Portland"));
printf(">Some cities to start with\n");
g_node_traverse(root, G_PRE_ORDER, G_TRAVERSE_ALL, -1, iter, NULL);
printf("\n>Inserting Coos Bay before Portland\n");
g_node_insert_data_before(root, portland, "Coos Bay");
g_node_traverse(root, G_PRE_ORDER, G_TRAVERSE_ALL, -1, iter, NULL);
printf("\n>Reversing the child nodes\n");
g_node_reverse_children(root);
g_node_traverse(root, G_PRE_ORDER, G_TRAVERSE_ALL, -1, iter, NULL);
printf("\n>Root node is %s\n", g_node_get_root(portland)->data);
printf(">Portland node index is %d\n", g_node_child_index(root, "Portland"));
g_node_destroy(root);
return 0;
}

***** Output *****

>Some cities to start with
Atlanta Portland Detroit
>Inserting Coos Bay before Portland
Atlanta Coos Bay Portland Detroit
>Reversing the child nodes
Atlanta Detroit Portland Coos Bay
>Root node is Atlanta
>Portland node index is 1

You can see that GNode allows you to put nodes pretty much anywhere you want to;

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 42 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

it's up to you to access them as you see fit. It's very flexible, but it may be so flexible
that it's a bit hard to pin down an actual usage scenario. In fact, it's not used in any
of the three open source applications surveyed here!

Real-world usage of trees

GTree is a complex structure and doesn't get as much usage as the other containers
we've looked at so far. Gaim doesn't use it at all. The GIMP and Evolution have
some usages, though.

The GIMP:

• gimp-2.2.4/app/menus/plug-in-menus.c uses a GTree to hold plug-in
menu entries. It uses g_tree_foreach and a custom GTraverseFunc to
traverse the GTree to add the plug-in procedure to the GimpUIManager. It
uses the standard C library function strcmp as its GCompareData
function.

• gimp-2.2.4/plug-ins/script-fu/script-fu-scripts.c uses a GTree to hold hold
"script-fu" scripts. Each value in the GTree is actually a GList of scripts.

Evolution's evolution-2.0.2/e-util/e-memory.c uses a GTree as part of an algorithm
that calculates unused memory chunks. It uses a custom GCompareFunc,
tree_compare, to order the _cleaninfo structures, which point to freeable
chunks.

Section 8. Queues

Concepts of queues

Another handy data structure is a queue. A queue holds a list of items and is usually
accessed by adding items to the end and removing items from the front. This is
useful when you have things that need to be processed the order in which they
arrived. A variation on the standard queue is the "double-ended queue", or dequeue,
which allows items to be added to or removed from either end of the queue.

There are times when it's good to avoid a queue, though. Queue searching is not
particularly fast (it's O(n)), so if you'll be searching frequently, a hash table or tree
might be more useful. The same applies to a situation where you'll be needing to
access random elements in the queue; if you do that, you'll be doing a lot of linear

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 43 of 54

http://www.ibm.com/legal/copytrade.shtml

scans of the queue.

GLib provides a dequeue implementation with GQueue; it supports the standard
queue operations. It's backed by a doubly-linked list (the GList), so it supports many
other operations, as well, such as insertion and removal from the middle of the
queue. But if you find yourself using those functions frequently, you may want to
rethink your container choice; perhaps another container might be more suitable.

Basic queue operations

Here are some basic GQueue operations using the "ticket line" as the model:

//ex-gqueue-1.c
#include <glib.h>
int main(int argc, char** argv) {
GQueue* q = g_queue_new();
printf("Is the queue empty? %s, adding folks\n", g_queue_is_empty(q) ? "Yes" : "No");
g_queue_push_tail(q, "Alice");
g_queue_push_tail(q, "Bob");
g_queue_push_tail(q, "Fred");
printf("First in line is %s\n", g_queue_peek_head(q));
printf("Last in line is %s\n", g_queue_peek_tail(q));
printf("The queue is %d people long\n", g_queue_get_length(q));
printf("%s just bought a ticket\n", g_queue_pop_head(q));
printf("Now %s is first in line\n", g_queue_peek_head(q));
printf("Someone's cutting to the front of the line\n");
g_queue_push_head(q, "Big Jim");
printf("Now %s is first in line\n", g_queue_peek_head(q));
g_queue_free(q);
return 0;
}

***** Output *****

Is the queue empty? Yes, adding folks
First in line is Alice
Last in line is Fred
The queue is 3 people long
Alice just bought a ticket
Now Bob is first in line
Someone's cutting to the front of the line
Now Big Jim is first in line

Most of the method names are fairly self-descriptive, but some of the finer points:

• The various methods to push and pop items from the queue don't return
anything, so you need to keep that pointer returned from g_queue_new
to use the queue.

• Either end of the queue is usable both for adding and removing. If you
want to simulate a ticket line with the folks in the back peeling off to buy
from another line, that's quite doable.

• There are nondestructive peek operations to check the item at the head

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 44 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

or tail of the queue.

• g_queue_free doesn't accept a function to assist in freeing each item,
so you'll need to do that manually; this is the same as with GSList.

Removing and inserting items

While a queue is usually only modified by adding/removing items from the ends,
GQueue allows you to remove arbitrary items and insert items in arbitrary locations.
Here's how that looks:

//ex-gqueue-2.c
#include <glib.h>
int main(int argc, char** argv) {
GQueue* q = g_queue_new();
g_queue_push_tail(q, "Alice");
g_queue_push_tail(q, "Bob");
g_queue_push_tail(q, "Fred");
printf("Queue is Alice, Bob, and Fred; removing Bob\n");
int fred_pos = g_queue_index(q, "Fred");
g_queue_remove(q, "Bob");
printf("Fred moved from %d to %d\n", fred_pos, g_queue_index(q, "Fred"));
printf("Bill is cutting in line\n");
GList* fred_ptr = g_queue_peek_tail_link(q);
g_queue_insert_before(q, fred_ptr, "Bill");
printf("Middle person is now %s\n", g_queue_peek_nth(q, 1));
printf("%s is still at the end\n", g_queue_peek_tail(q));
g_queue_free(q);
return 0;
}

***** Output *****

Queue is Alice, Bob, and Fred; removing Bob
Fred moved from 2 to 1
Bill is cutting in line
Middle person is now Bill
Fred is still at the end

Lots of new functions there:

• g_queue_index scans the queue for an item and returns the index; if it
can't find the item, it returns -1.

• To insert a new item in the middle of the queue, you need a pointer to the
place where you want to insert it. As you can see, you can get a handle
on this by calling one of the "peek link" functions:
g_queue_peek_tail_link, g_queue_peek_head_link, or
g_queue_peek_nth_link, which returns a GList. Then you can insert
an item either before or after that GList.

• g_queue_remove lets you remove an item from anywhere in the queue.
Continuing the "ticket line" model, this means that folks can abandon the
line; they're not stuck in it once they join up.

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 45 of 54

http://www.ibm.com/legal/copytrade.shtml

Finding items

In previous examples, you've seen how you can get an item if you have a pointer to
the data it contains or if you know its index. But like the other GLib containers,
GQueue also includes several find functions: g_queue_find and
g_queue_find_custom:

//ex-gqueue-3.c
#include <glib.h>
gint finder(gpointer a, gpointer b) {
return strcmp(a,b);
}
int main(int argc, char** argv) {
GQueue* q = g_queue_new();
g_queue_push_tail(q, "Alice");
g_queue_push_tail(q, "Bob");
g_queue_push_tail(q, "Fred");
g_queue_push_tail(q, "Jim");
GList* fred_link = g_queue_find(q, "Fred");
printf("The fred node indeed contains %s\n", fred_link->data);
GList* joe_link = g_queue_find(q, "Joe");
printf("Finding 'Joe' yields a %s link\n", joe_link ? "good" : "null");
GList* bob = g_queue_find_custom(q, "Bob", (GCompareFunc)finder);
printf("Custom finder found %s\n", bob->data);
bob = g_queue_find_custom(q, "Bob", (GCompareFunc)g_ascii_strcasecmp);
printf("g_ascii_strcasecmp also found %s\n", bob->data);
g_queue_free(q);
return 0;
}

***** Output *****

The fred node indeed contains Fred
Finding 'Joe' yields a null link
Custom finder found Bob
g_ascii_strcasecmp also found Bob

Note that if g_queue_find can't find the item, it returns null. And you can pass
either a library function, like g_ascii_strcasecmp , or a custom function like
finder in the above example as the GCompareFunc argument to
g_queue_find_custom .

Working the queue: Copy, reverse, and foreach

Since GQueue is backed by a GList, it supports some list-manipulation operations.
Here's an example of how to use g_queue_copy , g_queue_reverse , and
g_queue_foreach :

//ex-gqueue-4.c
#include <glib.h>
int main(int argc, char** argv) {
GQueue* q = g_queue_new();
g_queue_push_tail(q, "Alice ");

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 46 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

g_queue_push_tail(q, "Bob ");
g_queue_push_tail(q, "Fred ");
printf("Starting out, the queue is: ");
g_queue_foreach(q, (GFunc)printf, NULL);
g_queue_reverse(q);
printf("\nAfter reversal, it's: ");
g_queue_foreach(q, (GFunc)printf, NULL);
GQueue* new_q = g_queue_copy(q);
g_queue_reverse(new_q);
printf("\nNewly copied and re-reversed queue is: ");
g_queue_foreach(new_q, (GFunc)printf, NULL);
g_queue_free(q);
g_queue_free(new_q);
return 0;
}

***** Output *****

Starting out, the queue is: Alice Bob Fred
After reversal, it's: Fred Bob Alice
Newly copied and re-reversed queue is: Alice Bob Fred

g_queue_reverse and g_queue_foreach are fairly straightforward; you've seen
them both working on various other ordered collections already. g_queue_copy
requires a bit of care though, since the pointers are copied but not the data. So when
freeing the data, make sure not to do a double-free.

More fun with links

You've seen a few examples of links; here are some handy link removal functions.
Recall that each item in the GQueue is actually a GList structure with the data stored
in a "data" member:

//ex-gqueue-5.c
#include <glib.h>
int main(int argc, char** argv) {
GQueue* q = g_queue_new();
g_queue_push_tail(q, "Alice ");
g_queue_push_tail(q, "Bob ");
g_queue_push_tail(q, "Fred ");
g_queue_push_tail(q, "Jim ");
printf("Starting out, the queue is: ");
g_queue_foreach(q, (GFunc)printf, NULL);
GList* fred_link = g_queue_peek_nth_link(q, 2);
printf("\nThe link at index 2 contains %s\n", fred_link->data);
g_queue_unlink(q, fred_link);
g_list_free(fred_link);
GList* jim_link = g_queue_peek_nth_link(q, 2);
printf("Now index 2 contains %s\n", jim_link->data);
g_queue_delete_link(q, jim_link);
printf("Now the queue is: ");
g_queue_foreach(q, (GFunc)printf, NULL);
g_queue_free(q);
return 0;
}

***** Output *****

Starting out, the queue is: Alice Bob Fred Jim

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 47 of 54

http://www.ibm.com/legal/copytrade.shtml

The link at index 2 contains Fred
Now index 2 contains Jim
Now the queue is: Alice Bob

Note that g_queue_unlink doesn't free the unlinked GList structure, so you'll need
to do that yourself. And since it is a GList structure, you'll need to use the
g_list_free function to free it -- not the simple g_free function. Of course, it's
simpler to call g_queue_delete_link and let that take care of freeing the memory
for you.

Sorting queues

Sorting a queue seems a bit odd, but since various other linked-list operations are
allowed (like insert and remove), so is this one. It could be handy too, if you
wanted to occasionally reorder the queue to move higher priority items to the front.
Here's an example:

//ex-gqueue-6.c
#include <glib.h>
typedef struct {
char* name;
int priority;
} Task;
Task* make_task(char* name, int priority) {
Task* t = g_new(Task, 1);
t->name = name;
t->priority = priority;
return t;
}
void prt(gpointer item) {
printf("%s ", ((Task*)item)->name);
}
gint sorter(gconstpointer a, gconstpointer b, gpointer data) {
return ((Task*)a)->priority - ((Task*)b)->priority;
}
int main(int argc, char** argv) {
GQueue* q = g_queue_new();
g_queue_push_tail(q, make_task("Reboot server", 2));
g_queue_push_tail(q, make_task("Pull cable", 2));
g_queue_push_tail(q, make_task("Nethack", 1));
g_queue_push_tail(q, make_task("New monitor", 3));
printf("Original queue: ");
g_queue_foreach(q, (GFunc)prt, NULL);
g_queue_sort(q, (GCompareDataFunc)sorter, NULL);
printf("\nSorted queue: ");
g_queue_foreach(q, (GFunc)prt, NULL);
g_queue_free(q);
return 0;
}

***** Output *****

Original queue: Reboot server Pull cable Nethack New monitor
Sorted queue: Nethack Reboot server Pull cable New monitor

Now you have a GQueue to model your workload and occasionally you can sort it,

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 48 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

remaining happy in the knowledge that Nethack will be promoted to its rightful
position at the front of the queue!

Real-world usage of queues

GQueue isn't used in Evolution, but the GIMP and Gaim use it.

The GIMP:

• gimp-2.2.4/app/core/gimpimage-contiguous-region.c uses a GQueue to
store a series of coordinates in a utility function that finds contiguous
segments. As long as the segment stays contiguous, new points are
pushed onto the end of the queue and then popped off to be checked
during the next loop iteration.

• gimp-2.2.4/app/vectors/gimpvectors-import.c uses a GQueue as part of a
Scalable Vector Graphics (SVG) parser. It's used as a stack; items are
both pushed onto and popped off of the head of the queue.

Gaim:

• gaim-1.2.1/src/protocols/msn/switchboard.c uses a GQueue to track
outgoing messages. New messages are pushed on to the tail and when
sent, are popped off the head.

• gaim-1.2.1/src/proxy.c uses a GQueue to track DNS lookup requests. It
uses the queue as a temporary holding area between the application
code and a DNS child process.

Section 9. Relations

Concepts of relations

A GRelation is like a simple database table; it consists of a series of records, or
tuples, each of which consists of several fields. Each tuple must have the same
number of fields, and you can specify an index on any field to allow lookups on that
field.

As an example, you could have a series of tuples holding names with the first name
in one field and the last name in the second field. Both fields could be indexed, so

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 49 of 54

http://www.ibm.com/legal/copytrade.shtml

that fast lookups could be done using either the first name or the last name.

GRelation shows a bit of a weakness in that each tuple can contain a maximum of
two fields. Thus, using it as an in-memory database table cache won't work well
unless your table is rather thin. I searched the gtk-app-devel-list mailing list
for notes on this and found that a patch had been discussed back in February of
2000 that would have expanded this to four fields, but it never seems to have made
it into the distribution.

The GRelation seems to be a little-known structure; none of the open source
applications that are surveyed in this tutorial are currently using it. A bit of poking
around the Web found an open source email client (Sylpheed-claws) that uses it for
a variety of purposes, including for tracking IMAP folders and message threads. So it
may just need a bit of publicity!

Basic operations of relations

Here's an example of creating a new GRelation with two indexed fields and then
inserting a few records and running some basic informational queries:

//ex-grelation-1.c
#include <glib.h>
int main(int argc, char** argv) {
GRelation* r = g_relation_new(2);
g_relation_index(r, 0, g_str_hash, g_str_equal);
g_relation_index(r, 1, g_str_hash, g_str_equal);
g_relation_insert(r, "Virginia", "Richmond");
g_relation_insert(r, "New Jersey", "Trenton");
g_relation_insert(r, "New York", "Albany");
g_relation_insert(r, "Virginia", "Farmville");
g_relation_insert(r, "Wisconsin", "Madison");
g_relation_insert(r, "Virginia", "Keysville");
gboolean found = g_relation_exists(r, "New York", "Albany");
printf("New York %s found in the relation\n", found ? "was" : "was not");
gint count = g_relation_count(r, "Virginia", 0);
printf("Virginia appears in the relation %d times\n", count);
g_relation_destroy(r);
return 0;
}

***** Output *****

New York was found in the relation
Virginia appears in the relation 3 times

Note that the indexes are added right after calling g_relation_new and before
calling g_relation_insert . That's because other GRelation functions, like
g_relation_count , depend on an index existing and will fail at runtime if it
doesn't exist.

The above code contains a call to g_relation_exists to see if "New York" is in
any GRelation. This requires an exact match on each field in the relation; you can

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 50 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

match on any one indexed field using g_relation_count .

You've seen g_str_hash and g_str_equal functions before in the GHashTable
section; they're used here to enable fast lookups of indexed fields in the GRelation.

Selecting tuples

Once data is in a GRelation, it can be fetched using the g_relation_select
function. The result is a point to a GTuples structure, which can be further queried
to get the actual data. Here's how to use it:

//ex-grelation-2.c
#include <glib.h>
int main(int argc, char** argv) {
GRelation* r = g_relation_new(2);
g_relation_index(r, 0, g_str_hash, g_str_equal);
g_relation_index(r, 1, g_str_hash, g_str_equal);
g_relation_insert(r, "Virginia", "Richmond");
g_relation_insert(r, "New Jersey", "Trenton");
g_relation_insert(r, "New York", "Albany");
g_relation_insert(r, "Virginia", "Farmville");
g_relation_insert(r, "Wisconsin", "Madison");
g_relation_insert(r, "Virginia", "Keysville");
GTuples* t = g_relation_select(r, "Virginia", 0);
printf("Some cities in Virginia:\n");
int i;
for (i=0; i < t->len; i++) {

printf("%d) %s\n", i, g_tuples_index(t, i, 1));
}
g_tuples_destroy(t);
t = g_relation_select(r, "Vermont", 0);
printf("Number of Vermont cities in the GRelation: %d\n", t->len);
g_tuples_destroy(t);
g_relation_destroy(r);
return 0;
}

***** Output *****

Some cities in Virginia:
0) Farmville
1) Keysville
2) Richmond
Number of Vermont cities in the GRelation: 0

A few notes on selecting and iterating tuples:

• The records in the GTuples structure returned from the
g_relation_select are in no particular order. To find out how many
records have been returned, use the len member of the GTuple
structure.

• g_tuples_index accepts three arguments:

• The GTuple structure

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 51 of 54

http://www.ibm.com/legal/copytrade.shtml

• The index of the record you're querying

• The index of the field you wish to retrieve

• Note that you need to call g_tuples_destroy to properly free up
memory allocated during a g_relation_select . This works fine even
if no records are actually referenced by the GTuples object.

Section 10. Wrapup

Summary

In this tutorial you've seen how to use the data structures found in the GLib library.
You've seen how you can use these containers to effectively manage your
program's data, and you've seen how several popular open source projects use
these containers as well. Along the way you've also gotten familiar with many of the
GLib types, macros, and string handling functions.

GLib contains a lot of other neat functionality: it's got a threading-abstraction layer, a
portable-sockets layer, message-logging utilities, date and time functions, file
utilities, random-number generation, and much more. Exploring any of these
modules would be worthwhile. And if you're feeling generous, you could even
improve some of the documentation -- for example, the documentation for the lexical
scanner includes a comment about how it needs some example code and more
detail. If you've benefited from open source code, don't forget to lend a hand in
improving it!

Acknowledgments

Many thanks to Sven Neumann, Simon Budig, Tim Ringenbach, and Michael Meeks
for their helpful feedback on the "real world" GLib usages shown in this tutorial.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 52 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• The GLib Reference Manual is the definitive source for GLib documentation.

• Several open source applications are discussed in this tutorial. Evolution is a
personal information management client; Gaim is an instant-messenger client;
and The GIMP is an image manipulation program. All three programs are
popular and use the GLib containers extensively.

• For a historical look at GLib, check out George Lebl's two-part series
"GNOMEnclature: The wonders of GLib" on developerWorks: Part 1
(developerWorks, April 2000) and Part 2 (developerWorks, June 2000).

• "Better programming through effective list handling" (developerWorks, January
2005) looks at extending singly-linked lists to handle arbitrary data types as an
effective tool for processing data.

• " Data structures: Make the right choice" (developerWorks, September 2004)
examines a real-world problem and performance-enhancing solution for
choosing the best data structure.

• The developerWorks Linux zone has more resources for Linux developers.

• Purchase Linux books at discounted prices in the Linux section of the
Developer Bookstore.

Get products and technologies

• Download the complete C source code of all the examples used in this tutorial.

• Download the GNU Compiler Collection (GCC) from the GCC releases page.

• Download GLib 2.4 from the GTK FTP site; there's also work available on GLib
v2.6.

• Order the SEK for Linux, a two-DVD set containing the latest IBM trial software
for Linux from DB2®, Lotus®, Rational®, Tivoli®, and WebSphere®.

• Build your next Linux development project with IBM trial software, available for
download directly from developerWorks.

• Purchase Linux books at discounted prices in the Linux section of the
Developer Bookstore.

Discuss

• The GTK application developers mailing list is a helpful resource for asking
questions and, better still, for researching archives for existing answers. This
message was mentioned in the GRelation discussion.

ibm.com/developerWorks developerWorks®

Manage C data using the GLib collections
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 53 of 54

http://developer.gimp.org/api/2.0/glib/index.html
http://www.gnome.org/projects/evolution/
http://gaim.sf.net/
http://www.gimp.org/
http://www.ibm.com/developerworks/linux/library/l-glib.html
http://www.ibm.com/developerworks/linux/library/l-glib2.html
http://www.ibm.com/developerworks/linux/library/l-listproc/
http://www.ibm.com/developerworks/linux/library/wa-datastruc2.html
http://www.ibm.com/developerworks/linux/
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=300&parent=Linux
http://infoether.com/~tom/glib-tutorial-examples.zip
http://gcc.gnu.org/releases.html
ftp://ftp.gtk.org/pub/gtk/v2.4/
ftp://ftp.gtk.org/pub/gtk/v2.6/
ftp://ftp.gtk.org/pub/gtk/v2.6/
http://www.ibm.com/developerworks/offers/sek/?S_TACT=105AGX03
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX03
http://devworks.krcinfo.com/WebForms/ProductList.aspx?Search=Category&id=300&parent=Linux
http://mail.gnome.org/archives/gtk-app-devel-list/
http://mail.gnome.org/archives/gtk-devel-list/2000-February/msg00127.html
http://www.ibm.com/legal/copytrade.shtml

• Get involved in the developerWorks community by participating in
developerWorks blogs.

About the author

Tom Copeland
Tom Copeland started programming in BASIC on a TRS-80 Model III, but demand for
that skill has waned and he now mostly writes Ruby, C, and Java code. He
contributes to various open source projects, including PMD and GForge, and he
helps administer RubyForge, an open source Ruby project repository. He and his
wife, Alina, have five children (Maria, Tommy, Anna, Sarah, and Steven) and live in
Virginia. You can contact Tom at tom@infoether.com.

developerWorks® ibm.com/developerWorks

Manage C data using the GLib collections
Page 54 of 54 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/developerworks/blogs/
mailto:tom@infoether.com
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	Prerequisites

	Organizing data
	GLib's scope
	Every program has to manage data
	Built-in data structures
	Algorithm analysis in 100 words (or fewer)
	Compiling GLib programs
	Using pkg-config
	Real-world GLib usage

	Singly-linked lists
	Concepts of singly-linked lists
	Creating, adding, and destroying
	Adding and then removing data
	Removing duplicate items
	Last, nth, and nth data
	A step back: Working with a user-defined type
	Combining, reversing, and all that
	Simple iterating
	Advanced iteration with functions
	Sorting with GCompareFunc
	Finding an element
	Advanced adding with insert
	Real-world usage of singly-linked lists

	Doubly-linked lists
	Concepts of doubly-linked lists
	Basic operations of doubly-linked lists
	Better navigation
	Removing nodes using links
	Indexes and positions
	Real-world usage of doubly-linked lists

	Hash tables
	Concepts of hash tables
	Some basic hash table operations
	Inserting and replacing values
	Iterating the key/value pairs
	Finding an item
	Tricky business: Stealing from the table
	Advanced lookups: Finding both a key and a value
	Multiple values for each key
	Real-world usage of hash tables

	Arrays
	Concepts of arrays
	Basic operations of arrays
	More new/free options
	More ways to add data
	Inserting data
	Removing data
	Sorting arrays
	Pointer arrays
	Byte arrays
	Real-world usage of arrays

	Trees
	Concepts of trees
	Basic tree operations
	Replace and steal
	Looking up data
	Listing the tree with foreach
	Searching
	More than binary: n-ary trees
	Real-world usage of trees

	Queues
	Concepts of queues
	Basic queue operations
	Removing and inserting items
	Finding items
	Working the queue: Copy, reverse, and foreach
	More fun with links
	Sorting queues
	Real-world usage of queues

	Relations
	Concepts of relations
	Basic operations of relations
	Selecting tuples

	Wrapup
	Summary
	Acknowledgments

	Resources
	About the author

